TTK4130: Modelling and Simulation
Energy-based methods and passivity
When designing systems we often are dependent on dividing the system into smaller sub-sections and study them separately. Energy-based methods is a practical way of examining the stability properties of the whole system with respect to its sub-systems. Here is the general motivation:
The interconnection of stable systems is not necessarily stable, however the interconnection of passive systems is passive and passive systems are stable
Energy-based methods
When studying stability properties of systems, we can use the fact that the energy in a system will decrease if the system is stable, e.g. if the kinetic energy of any mechanic system is monotonically increasing, it is certainly unstable.
The energy function
Let
It may be the total energy of the system or some other property related to the energy. We then define the time derivative of the system to be
If
For a second-order system
Lyapunov methods
In this method, we are considering a plant
we then select a suitable energy function
Given this function, we have that
Where
Passivity
If a system can be described as a parallell or feedback interconnection of passive subsystems, then the total system will be passive, and it will not generate energy. This will under certain assumptions imply that the system is stable.
Concider a system with input
u(t) and outputy(t) . Suppose that there is a constantE0≥0 so that for all control time histories of u and allT≥0 the integral ofu(t)y(t) satisfies∫T0u(t)y(t)dt≥−E0 then the system is said to be passive.
Positive real transfer functions
A system is only passive if, and only if the transfer function from input to output is positive real.
The function
H(s) is positive real if
H(s) is analytic for allRe[s]>0
H(s) is real for all positive and reals
Re[H(s)]≥0,∀Re[s]>0
If the function
The rational function
H(s) is positive real if and only if
All the poles of
H(s) have real parts less than or equal to zero
Re[H(jω)]≥0,∀jω≠pole of H(s) If
jω0 is a pole ofH(s) , then it is a simple pole andRess=jω0[H(s)]=lims→jω0(s−jω0)H(s) is real and positive. IfH(s) is a pole at infitity, then it is a simple pole, andR∞=limω→∞H(jω)jω exsists and is real and positive
Bounded real transfer functions
The function B(s) is bounded real if
B(s) is analytic for allRe[s]>0
|B(s)|≤1 for all positive and real s
These properties can be usefull by defining
Then we have the property that
Storage function formulation
Rigid body dynamics
Vectors
The scalar product
The vector cross product
The rotation matrix
The coordinate transformation from frame b to frame a is given by
va=Rabvb whereRab={→ai⋅→aj} is called the rotation matrix froma tob . The elementsrij=→ai⋅→aj of the rotation matrixRab are called direction cosinesThe rotation matrix is orthogonal and satisfies
Rba=(Rab)⊤=(Rab)−1