TTK4115: Linear System Theory
$$
\newcommand{\dt}{\,\mathrm{d}t}
\newcommand{\dx}{\,\mathrm{d}x}
\newcommand{\dy}{\,\mathrm{d}y}
\newcommand{\dh}{\,\mathrm{d}h}
\newcommand{\pt}{\partial t}
\newcommand{\px}{\partial x}
\newcommand{\py}{\partial y}
\newcommand{\QEDA}{\hfill\ensuremath{\blacksquare}}
\newcommand{\QEDB}{\hfill\ensuremath{\square}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\bmat}[1]{\begin{bmatrix}#1\end{bmatrix}}
\renewcommand{\vec}[1]{\mathbf{#1}}
#Jordan Form
## Definition
The Jordan form of a system can be derived by means of a transformation matrix $ \vec{T} $ such that
$$
\vec{J} = \vec{T}^{-1} \vec{A} \vec{T}, \qquad \vec{\hat{B}} = \vec{T}^{-1} \vec{B}, \qquad \vec{\hat{C}} = \vec{C} \vec{T}
$$
where T consist of the eigenvectors of A
$$
\vec{T}= [ \textbf{v}_1 \quad \textbf{v}_2 \quad ... \quad \textbf{v}_n ]
$$